Affiliation:
1. Laboratoire de Physiologie et Endocrinologie Cellulaire Rénale, Institut National de la Santé et de la Recherche Médicale Unité 356, Université Pierre et Marie Curie, Centre Hospitalo-Universitaire Broussais, 75270 Paris Cedex 06, France
Abstract
The present studies examined the effects of chronic NaCl administration and metabolic alkalosis on NHE-3, an apical Na+/H+exchanger of the rat medullary thick ascending limb of Henle (MTAL). NaCl administration had no effect on NHE-3 mRNA abundance as assessed by competitive RT-PCR, as well as on NHE-3 transport activity estimated from the Na+-dependent cell pH recovery of Na+-depleted acidified MTAL cells, in the presence of 50 μM Hoe-694, which specifically blocks NHE-1 and NHE-2. Two models of metabolic alkalosis were studied, one associated with high sodium intake, i.e., NaHCO3 administration, and one not associated with high sodium intake, i.e., chloride depletion alkalosis (CDA). In both cases, the treatment induced a significant metabolic alkalosis that was associated with a decrease in NHE-3 transport activity (−27% and −25%, respectively). Negative linear relationships were observed between NHE-3 activity and plasma pH or bicarbonate concentration. NHE-3 mRNA abundance and NHE-3 protein abundance, assessed by Western blot analysis, also decreased by 35 and 25%, respectively, during NaHCO3-induced alkalosis, and by 47 and 33%, respectively, during CDA. These studies demonstrate that high sodium intake has per se no effect on MTAL NHE-3. In contrast, chronic metabolic alkalosis, regardless of whether it is associated with high sodium intake or not, leads to an appropriate adaptation of NHE-3 activity, which involves a decrease in NHE-3 protein and mRNA abundance.
Publisher
American Physiological Society
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献