Vasopressin regulates apical targeting of aquaporin-2 but not of UT1 urea transporter in renal collecting duct

Author:

Inoue Takeaki1,Terris James12,Ecelbarger Carolyn A.1,Chou Chung-Lin1,Nielsen Soren3,Knepper Mark A.1

Affiliation:

1. Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda 20892;

2. Department of Physiology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814; and

3. Department of Cell Biology, University of Aarhus, DK-8000 Aarhus, Denmark

Abstract

In the renal inner medullary collecting duct (IMCD), vasopressin regulates two key transporters, namely aquaporin-2 (AQP2) and the vasopressin-regulated urea transporter (VRUT). Both are present in intracellular vesicles as well as the apical plasma membrane. Short-term regulation of AQP2 has been demonstrated to occur by vasopressin-induced trafficking of AQP2-containing vesicles to the apical plasma membrane. Here, we have carried out studies to determine whether short-term regulation of VRUT occurs by a similar process. Cell surface labeling with NHS-LC-biotin in rat IMCD suspensions revealed that vasopressin causes a dose-dependent increase in the amount of AQP2 labeled at the cell surface, whereas VRUT labeled at the cell surface did not increase in response to vasopressin. Immunoperoxidase labeling of inner medullary thin sections from Brattleboro rats treated with 1-desamino-8-d-arginine vasopressin (DDAVP) for 20 min revealed dramatic translocation of AQP2 to the apical region of the cell, with no change in the cellular distribution of VRUT. In addition, differential centrifugation of inner medullary homogenates from Brattleboro rats treated with DDAVP for 60 min revealed a marked depletion of AQP2 from the low-density membrane fraction (enriched in intracellular vesicles) but did not alter the quantity of VRUT in this fraction. Finally, AQP2-containing vesicles immunoisolated from a low-density membrane fraction from renal inner medulla did not contain immunoreactive VRUT. Thus vasopressin-mediated regulation of AQP2, but not of VRUT, depends on regulated vesicular trafficking to the plasma membrane.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3