Affiliation:
1. Departments of Internal Medicine and
2. Physiology, University of Michigan, Ann Arbor, Michigan 48104; and
3. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
Abstract
Renal medullary prostaglandins are believed to exert an important functional role in antagonizing vasopressin effects in dehydration. Studies were undertaken to determine the effect of hyperosmolality on cyclooxygenase (COX) isoform expression in the renal medulla. COX-1 and COX-2 mRNA and protein levels were determined by RT-PCR or Western blotting in Sprague-Dawley rats on varying water intakes, in Brattleboro rats and in Long-Evans controls. Over a wide range of urinary tonicity, COX-2 expression correlated closely with urine osmolality levels ( R = 0.872). COX-1 levels did not vary. Immunolocalization showed that the stimulation of COX-2 expression by dehydration occurred predominantly in the collecting duct. Hypertonicity caused by addition of NaCl produced a dose- and time-dependent stimulation of COX-2 expression in mIMCD-K2 cells as well as in MDCK cells. COX-1 was unaffected. In the same cell lines, mannitol, sucrose, and raffinose also had a stimulatory effect. The tonicity-stimulated COX-2 expression in mIMCD-K2 cells was almost completely blocked by a tyrosine kinase inhibitor, genistein at 100 μM. In MDCK cells transfected with a 2.7-kb COX-2 promoter and lacZ reporter construct, NaCl induced a twofold increase in β-galactosidase activity. Using mIMCD-K2 cells, hypertonic NaCl (600 mosmol/kgH2O for 24 h) induced a 33-fold increase in PGE2 release determined by enzyme immunoassay, an effect completely blocked by 3 μM indomethacin or the COX-2-specific blocker N-(2-cyclohexy-4-nitrophenyl)methanesulfonamide (NS-398). We conclude that in inner medulla, COX-2 but not COX-1 is upregulated by hyperosmolality.
Publisher
American Physiological Society
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献