Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney

Author:

Miyata Noriyuki1,Park Frank1,Li Xiao Feng1,Cowley Allen W.1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

Abstract

ANG II contributes importantly to the regulation of renal vascular resistance, glomerular filtration, and tubular epithelial transport, yet there remains a paucity of information regarding the localization of the ANG II type 1 and 2 (AT1 and AT2) receptors within the rat kidney particularly within the vasculature. The present study was designed to localize the transcriptional and translational site(s) of AT1 and AT2 receptor (AT1R and AT2R, respectively) expression within the rat kidney. Using immunohistochemistry, we detected the AT1R translational sites throughout the kidney, with the strongest labeling found in the vasculature of the renal cortex and the proximal tubules of the outer medulla. The AT2R protein expression was found throughout the rat kidney, although there was little to no expression found in the glomerulus and medullary thick ascending limbs of Henle (TAL). Gene-specific primers were then designed to distinguish between the receptor subtypes within microdissected renal tubular and vascular segments using RT-PCR. AT1AR, AT1BR, and AT2R mRNA were found within the renal vasculature (afferent arterioles, arcuate artery, and outer medullary descending vasa recta). The mRNA for both the AT1R isoforms was also detected in the glomeruli and the renal tubules (proximal tubules, TAL, and collecting ducts); however, no AT2R mRNA was detected within the glomerulus and was inconsistently found within the medullary TAL (MTAL). Taken together, these data show that mRNA for the AT1R subtypes was located in all of the renal tubular and vascular segments. Evidence for AT2R mRNA was also found in all but two of the vascular and tubular segments, the MTAL, and the glomeruli. These results are consistent with the whole tissue immunohistochemically localized receptors.

Publisher

American Physiological Society

Subject

Physiology

Cited by 247 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3