Serotonin 5-HT2A receptor induces TGF-β1 expression in mesangial cells via ERK: proliferative and fibrotic signals

Author:

Grewal Jasjit S.1,Mukhin Yurii V.1,Garnovskaya Maria N.1,Raymond John R.1,Greene Eddie L.1

Affiliation:

1. Department of Medicine, Nephrology Division, Medical University of South Carolina and the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425

Abstract

We examined the links between fibrotic and proliferative pathways for the 5-HT2A receptor in rat mesangial cells. Serotonin (5-hydroxytryptamine, 5-HT) induced transforming growth factor-β1 (TGF-β1) mRNA in a concentration-dependent (peak at 30 nM 5-HT) and time-dependent fashion. For 10 nM 5-HT, the effect was noticeable at 1 h and maximal by 6 h. Inhibition of 1) protein kinase C (PKC), 2) mitogen- and extracellular signal-regulated kinase kinase (MEK1) with 2′-amino-3′-methoxyflavone (PD-90859), and 3) extracellular signal-regulated kinase (ERK) with apigenin attenuated this effect. The effect was blocked by antioxidants, N-acetyl-l-cysteine (NAC) and α-lipoic acid, and mimicked by direct application of H2O2. TGF-β1 mRNA induction was also blocked by diphenyleneiodonium and 4-(2-aminoethyl)-benzenesulfonyl fluoride, which inhibit NAD(P)H oxidase, a source of oxidants. 5-HT increased the amount of TGF-β1 protein, validating the mRNA studies and demonstrating that 5-HT potently activates ERK and induces TGF-β1 mRNA and protein in mesangial cells. Mapping studies strongly supported relative positions of the components of the signaling cascade as follow: 5-HT2A receptor → PKC → NAD(P)H oxidase/reactive oxygen species → MEK → ERK → TGF-β1 mRNA. These studies demonstrate that mitogenic signaling components (PKC, MEK, and oxidants) are directly linked to the regulation of TGF-β1, a key mediator of fibrosis. Thus a single stimulus can direct both proliferative and fibrotic signals in renal mesangial cells.

Publisher

American Physiological Society

Subject

Physiology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3