Calcium recruitment in renal vasculature: NE effects on blood flow and cytosolic calcium concentration

Author:

Salomonsson Max1,Arendshorst William J.1

Affiliation:

1. Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545

Abstract

This study provides new information about the relative importance of Ca2+ mobilization and entry in the renal vascular response to adrenoceptor activation. We measured renal blood flow (RBF) in Sprague-Dawley rats in vivo using electromagnetic flowmetry. We measured intracellular free Ca2+ concentration ([Ca2+]i) in isolated afferent arterioles utilizing ratiometric photometry of fura-2 fluorescence. Renal arterial injection of NE produced a transient decrease in RBF. The response was attenuated, in a dose-dependent manner, up to ∼50% by nifedipine, an antagonist of L-type Ca2+ entry channels. Inhibition of Ca2+ mobilization by 3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester (TMB-8) inhibited the renal vascular effects of NE in a dose-dependent manner, with maximal blockade of ∼80%. No additional attenuation was observed when nifedipine and TMB-8 were administered together. In microdissected afferent arterioles, norepinephrine (NE; 10−6 M) elicited an immediate square-shaped increase in [Ca2+]i, from 110 to 240 nM. This in vitro response was blocked by nifedipine (10−6 M) and TMB-8 (10−5 M) to a degree similar to that of the in vivo experiments. A nominally calcium-free solution blocked 80–90% of the [Ca2+]iresponse to NE. The increased [Ca2+]ielicited by depolarization with medium containing 50 mM KCl was totally blocked by nifedipine. In contrast, TMB-8 had no effect. Our results indicate that both Ca2+ entry and mobilization play important roles in the renal vascular Ca2+ and contractile response to adrenoceptor activation. The entry and mobilization mechanisms activated by NE may interact. That a calcium-free solution caused a larger inhibition of the NE effects on afferent arterioles than nifedipine suggests more than one Ca2+ entry pathway.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3