Nitric oxide inhibits sodium/hydrogen exchange activity in the thick ascending limb

Author:

Garvin Jeffrey L.1,Hong Nancy J.1

Affiliation:

1. Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202

Abstract

Nitric oxide (NO) inhibits transport in various nephron segments, and the thick ascending limb (TAL) expresses nitric oxide synthase (NOS). However, the effects of NO on TAL transport have not been extensively studied. We tested the hypothesis that NO inhibits apical and basolateral Na+/H+exchange by the TAL by measuring intracellular pH (pHi) of isolated, perfused rat TALs using the fluorescent dye 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). The NO donor spermine NONOate (SPM, 10 μM) decreased steady-state pHi in medullary TALs from 7.18 ± 0.13 to 7.13 ± 0.14 ( P < 0.02), whereas controls did not decrease significantly. We next measured the buffering capacity of medullary TALs and the rate at which they recovered from acid loads to investigate the mechanism whereby NO reduces steady-state pHi. SPM decreased H+ flux ( J H) from 2.41 ± 0.66 to 0.97 ± 0.19 pmol ⋅ min−1 ⋅ mm−1, 55%. To assure that the decrease in J H was due to NO, another donor, nitroglycerin (NTG; 10 μM), was used. NTG decreased J H from 1.65 ± 0.11 to 1.07 ± 0.24 pmol ⋅ min−1 ⋅ mm−1, 37%. To determine the relative contributions of the apical and basolateral Na+/H+exchangers, 5-( N, N-dimethyl)amiloride (DMA; 100 μM) was added to either bath or lumen. With DMA added to the bath, SPM decreased J H from 4.78 ± 1.08 to 2.74 ± 0.54 pmol ⋅ min−1 ⋅ mm−1, an inhibition of 41%; and with DMA added to the lumen, SPM decreased J H from 2.31 ± 0.29 to 1.74 ± 0.27 pmol ⋅ min−1 ⋅ mm−1, a reduction of 26%. Addition of DMA alone to both bath and lumen resulted in an 87% inhibition of J H. We conclude that NO inhibits both apical and basolateral Na+/H+exchangers and consequently may play an important role in regulating pHi and may alter acid/base balance by directly affecting bicarbonate absorption in the TAL.

Publisher

American Physiological Society

Subject

Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3