A simple, nonradioactive method for evaluating single-nephron filtration rate using FITC-inulin

Author:

Lorenz John N.1,Gruenstein Eric2

Affiliation:

1. Departments of Molecular and Cellular Physiology, and

2. Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267

Abstract

The determination of inulin concentration in nanoliter fluid samples is fundamental to micropuncture investigations of renal function, and this is generally accomplished through the use of radioisotopes. We report here a simple and reliable alternative to the use of radioisotopes that employs FITC-labeled inulin. Samples containing FITC-inulin are stored between oil columns in constant-bore microcapillary tubes, which are then used as cuvettes to determine fluorescence on a microscope fluorometer. Standard curves were generated and found to be linear, with correlation coefficients ( R) exceeding 0.99 in every case. Although the fluorescence of FITC-inulin was found to be pH dependent, the pH and fluorescence of each 20- to 40-nl sample could be normalized by the addition of 1 nl of 0.5 M HEPES at pH 7.5. In mice prepared for standard micropuncture, simultaneous measurements of tubular fluid-to-plasma ratios (TF/P) using FITC-inulin and [125I]iothalamate were highly correlated (slope = 0.95, y-intercept = 0.01, R = 0.942), as were whole kidney measurements of glomerular filtration rate (GFR) (slope = 1.25, y-intercept = −53.5 μl/min, R = 0.99). Micropuncture determinations of late-proximal samples from mice before and after treatment with acetazolamide showed expected changes: TF/P of FITC-inulin decreased from 1.89 ± 0.07 to 1.48 ± 0.10; single-nephron GFR (SNGFR) decreased from 9.64 ± 1.1 to 6.65 ± 1.0 nl/min; and fractional fluid reabsorption decreased from 45.3 ± 1.9 to 26.8 ± 5.2%. Measurements of TF/P of FITC-inulin, volume, and SNGFR using this technique were stable for at least 2 wk when samples were stored in the dark at 4°C. These data demonstrate that this simple method for determining inulin clearance represents a viable and accurate alternative to radioactive methods. This approach has the added benefits of being relatively inexpensive and leaving the micropuncture sample intact.

Publisher

American Physiological Society

Subject

Physiology

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3