Topology of Schwann cells and sympathetic innervation along preglomerular vessels: a confocal microscopic study in protein S100B/EGFP transgenic mice

Author:

Darlot Fannie,Artuso Annie,Lautredou-Audouy Nicole,Casellas Daniel

Abstract

Schwann cells (Sc), associated axons, and nearby vascular endothelium constitute a functional trilogy of major importance during the development and regrowth of peripheral vascular nerves. The goal of the present study is to provide a technique of triple fluorescence confocal imaging of these cell types along renal preglomerular vessels. We took advantage of a protein S100B/EGFP transgenic mouse to visualize Sc. The endothelium was labeled with an intravenous injection of fluorescently tagged lectin, and after tissue processing, adrenergic nerves were revealed with an antibody against the marker protein synaptophysin. As a validation step, we found that EGFP-positive perivascular cells with prominent cell bodies and extensive, multidirectional cell processes were protein S100B positive. They were identified as Sc and indirectly assumed to be unmyelinated Sc. By contrast, we found strong EGFP expression in proximal epithelial cells and in the epithelium lining thin limbs of Henle. This epithelial fluorescence was not associated with immunoreactive protein S100B and thus corresponded to ectopic EGFP expressions in this mouse strain. Sc were organized in bundles or as a meshwork surrounding the preglomerular vasculature from arcuate arteries to afferent arterioles. No Sc were detected in the medulla. Although most Sc were closely apposed to adrenergic varicosities, many varicosities were not associated with detectable Sc processes. The present technique, and the capacity of confocal microscopy to yield three-dimensional imaging, allow the study of the microtopology of Sc and related sympathetic axons in the renal perivascular interstitium.

Publisher

American Physiological Society

Subject

Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3