Chronic insulin treatment phosphorylates the renal Na-K-ATPase α1-subunit at serine 16/23 and reduces its activity involving PI3-kinase-dependent PKC activation

Author:

Banday Anees Ahmad1

Affiliation:

1. College of Pharmacy, University of Houston, Houston, Texas

Abstract

The regulation of Na-K-ATPase in various tissues is under the control of a number of hormones and peptides that exert both short- and long-term control over its activity. The present study was performed to investigate the effect of chronic insulin treatment on Na-K-ATPase in renal proximal tubular cells. Incubation of opossum kidney (OK) cells, transfected with the rat Na-K-ATPase α1-subunit, with 1 nmol/l insulin for 48 h decreased Na-K-ATPase activity. Insulin decreased α1-protein content and increased α1-serine phosphorylation and α1-adaptor protein 2 (AP2) interaction. Removal of the 26 NH2-terminal (-NT) amino acid from the α1-subunit containing serine/threonine sites abolished the insulin-mediated serine phosphorylation and inhibition of Na-K-ATPase. Substitution of serine 16 and 23 with alanine showed a comparable effect on -NT. Insulin increased the activity of protein kinase C (PKC), which was blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. Both PI3K and PKC inhibitors abolished the insulin-mediated inhibition of Na-K-ATPase. Insulin increased the expression of PKC-β1, -δ, -ξ, and-λ; however, only PKC-ξ/λ-specific inhibitors blocked insulin-induced phosphorylation and inhibition of Na-K-ATPase. Our data demonstrate that insulin activates the atypical PKC isoforms-ξ/λ via the PI3K pathway. PKC-ξ/λ-induced phosphorylation of the α1-subunit at serine 16 and 23 leads to AP2 recruitment, degradation, and a decrease in Na-K-ATPase activity.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3