Sodium transport antagonism reduces thrombotic microangiopathy in stroke-prone spontaneously hypertensive rats

Author:

Sepehrdad Reza,Chander Praveen N.,Singh Gagan,Stier Charles T.

Abstract

We examined whether amiloride, an agent that possesses epithelial sodium channel (ENaC)- and sodium/hydrogen exchange (NHE)-inhibitory activities, would exhibit renal vascular protection in saline-drinking, stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP received amiloride (1.0 mg·kg−1·day−1, n = 6) or deionized water (3 mg·kg−1·day−1, n = 6) for 5 wk starting at 61 days of age. Systolic blood pressure (SBP) did not differ among the groups, and there was no difference in the average daily urine output, sodium excretion, or potassium excretion. Terminal urinary protein excretion, blood urea nitrogen, and renal thrombotic microangiopathic lesions were markedly reduced in the amiloride group with no difference in plasma renin activity (PRA). In a survival protocol, SHRSP infused subcutaneously with benzamil (0.7 mg·kg−1·day−1, n = 8), a selective ENaC inhibitor, dimethylamiloride (0.7 mg·kg−1·day−1, n = 8), a selective NHE inhibitor, or vehicle ( n = 7) had comparable SBP. Dimethylamiloride nonetheless prolonged survival of SHRSP ( P < 0.005 vs. vehicle), and benzamil-treated SHRSP lived even longer ( P < 0.0001 vs. vehicle; P < 0.05 vs. dimethylamiloride). In a separate series, plasma potassium concentration was elevated by dimethylamiloride (3.4 ± 0.1 meq/l, n = 8) and benzamil (3.3 ± 0.1 meq/l, n = 8) relative to vehicle (3.0 ± 0.1 meq/l, n = 8) at 4 but not at 24 h after dosing. These findings suggest the involvement of a sodium transport mechanism in the development of thrombotic microangiopathy in SHRSP, unrelated to marked changes in arterial pressure, PRA, plasma potassium, or urinary water and electrolyte excretion.

Publisher

American Physiological Society

Subject

Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3