Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP

Author:

Zhou Xiaoming,Ferraris Joan D.,Cai Qi,Agarwal Anupam,Burg Maurice B.

Abstract

The signaling pathways leading to high NaCl-induced activation of the transcription factor tonicity-responsive enhancer binding protein/osmotic response element binding protein (TonEBP/OREBP) remain incompletely understood. High NaCl has been reported to produce oxidative stress. Reactive oxygen species (ROS), which are a component of oxidative stress, contribute to regulation of transcription factors. The present study was undertaken to test whether the high NaCl-induced increase in ROS contributes to tonicity-dependent activation of TonEBP/OREBP. Human embryonic kidney 293 cells were used as a model. We find that raising NaCl increases ROS, including superoxide. N-acetylcysteine (NAC), an antioxidant, and MnTBAP, an inhibitor of superoxide, reduce high NaCl-induced superoxide activity and suppress both high NaCl-induced increase in TonEBP/OREBP transcriptional activity and high NaCl-induced increase in expression of BGT1mRNA, a transcriptional target of TonEBP/OREBP. Catalase, which decomposes hydrogen peroxide, does not have these effects, whether applied exogenously or overexpressed within the cells. Furthermore, NAC and MnTBAP, but not catalase, blunt high NaCl-induced increase in TonEBP/OREBP transactivation. NG-monomethyl-l-arginine, a general inhibitor of nitric oxide synthase, has no significant effect on either high NaCl-induced increase in superoxide or TonEBP/OREBP transcriptional activity, suggesting that the effects of ROS do not involve nitric oxide. Ouabain, an inhibitor of Na-K-ATPase, attenuates high NaCl-induced superoxide activity and inhibits TonEBP/OREBP transcriptional activity. We conclude that the high NaCl-induced increase in ROS, including superoxide, contributes to activation of TonEBP/OREBP by increasing its transactivation.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3