Internal sodium balance in DOCA-salt rats: a body composition study

Author:

Titze Jens,Bauer Katharina,Schafflhuber Markus,Dietsch Peter,Lang Rainer,Schwind Karl H.,Luft Friedrich C.,Eckardt Kai-Uwe,Hilgers Karl F.

Abstract

The idea that Na+ retention inevitably leads to water retention is compelling; however, were Na+ accumulation in part osmotically inactive, regulatory alternatives would be available. We speculated that in DOCA-salt rats Na+ accumulation is excessive relative to water. Forty female Sprague-Dawley rats were divided into four subgroups. Groups 1 and 2 (controls) received tap water or 1% saline (salt) for 5 wk. Groups 3 and 4 received subcutaneous DOCA pellets and tap water or salt. Na+, K+, and water were measured in skin, bone, muscle, and total body by desiccation and consecutive dry ashing. DOCA-salt led to total body Na+ excess (0.255 ± 0.022 vs. 0.170 ± 0.010 mmol/g dry wt; P < 0.001), whereas water retention was only moderate (0.685 ± 0.119 vs. 0.648 ± 0.130 ml/g wet wt; P < 0.001). Muscle Na+ retention (0.220 ± 0.029 vs. 0.145 ± 0.021 mmol/g dry wt; P < 0.01) in DOCA-salt was compensated by muscle K+ loss, indicating osmotically neutral Na+/K+ exchange. Skin Na+ retention (0.267 ± 0.049 vs. 0.152 ± 0.014 mmol/g dry wt; P < 0.001) in DOCA-salt rats was not balanced by K+ loss, indicating osmotically inactive skin Na+ storage. We conclude that DOCA-salt leads to tissue Na+ excess relative to water. The relative Na+ excess is achieved by two distinct mechanisms, namely, osmotically inactive Na+ storage and osmotically neutral Na+ retention balanced by K+ loss. This “internal Na+ escape” allows the maintenance of volume homeostasis despite increased total body Na+.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3