Renal sympathetic nerves modulate erythropoietin plasma levels after transient hemorrhage in rats

Author:

Ditting Tilmann,Hilgers Karl F.,Stetter Alexander,Linz Peter,Schönweiss Christina,Veelken Roland

Abstract

In contrast to other sympathetic outflow tracts, renal sympathetic nerve activity (RSNA) decreases in response to hypotensive hemorrhage. The functional significance of this “paradox” is not known. We tested the hypothesis that RSNA modulates renal perfusion and thus erythropoietin (EPO) release after transient hypotensive hemorrhage in anesthetized rats. Plasma EPO was measured before and after 30 min of transient hypotensive hemorrhage (i.e., −40 mmHg from mean baseline blood pressure, followed by reinfusion of shed blood) and 120 min thereafter in sham-denervated rats, and after renal denervation (DNX) or bilateral cervical vagotomy (VX) to abolish/blunt the RSNA decrease mediated by a cardiopulmonary reflex. RSNA, renal Doppler flow, renal vascular resistance (RVR), resistance index, and oxygen delivery/uptake (Do2/V̇o2) were measured. RSNA decreased in intact animals (−40 ± 5% from baseline, P < 0.05). This was blunted by VX. With intact nerves, EPO level did not increase. In DNX rats, EPO was increased at minute 120 (49 ± 3 vs. 74 ± 2 mU/ml; P < 0.05), in VX rats this (47 ± 2 vs. 62 ± 4 mU/ml; P < 0.05) was less pronounced. Do2 in DNX rats was lower compared with intact and VX rats (0.25 ± 0.04 vs. 0.51 ± 0.06 and 0.54 ± 0.05 ml O2/min; P < 0.05) due to lower Doppler flow and increased RVR. RVR and Do2 were similar in intact and VX rats, but resistance index differed between all groups (0.70 ± 0.02 vs. 0.78 ± 0.02 vs. 0.85 ± 0.02; P < 0.05, intact vs. VX vs. DNX), indicating differential reactivity of renal vasculature. V̇o2 was unaffected by VX and DNX. Renal sympathoinhibition during hypotensive hemorrhage might help to preserve sufficient oxygenation of renal tissue by modulation of hemodynamic mechanisms that act to adapt renal oxygen availability to demand.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3