A mathematical model of the rat proximal tubule

Author:

Weinstein A. M.

Abstract

The equations of mass conservation and electroneutrality are used to extend a nonequilibrium thermodynamic model of the rat proximal tubule epithelium to a representation of a 0.5-cm segment of tubule. The output of the tubule model includes the luminal profiles and absolute proximal reabsorption of Na, K, Cl, HCO3, HPO4, H2PO4, glucose, and urea, generated by the epithelial model. Transport rates and permeabilities, chosen in agreement with those of the rat, result in luminal glucose and bicarbonate depletion and a transition from an electronegative to positive lumen. Despite the development of significant transepithelial osmotic driving forces (a transepithelial glucose gradient and Cl-HCO3 asymmetry), intraepithelial solute-solvent coupling remains an important force for water reabsorption along the proximal tubule length. In particular, this means that when osmotic gradients that appear under free-flow conditions are used in the calculation of the epithelial water permeability, a substantial overestimate of this permeability will be obtained. A single first-order differential equation has been derived in conjunction with an approximate nonelectrolyte model of the proximal tubule that represents both coupled and gradient-driven water reabsorption. In the present work, this equation is shown to yield an accurate description of water transport by the comprehensive tubule model.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3