Effect of acute acidemia on phosphate uptake by renal proximal tubular brush-border membranes

Author:

Levine B. S.,Kraut J. A.,Mishler D. R.,Crooks P. W.

Abstract

Prolonged metabolic acidosis is associated with depressed phosphate (Pi) uptake by the brush-border membrane (BBM) of the proximal tubule. To examine if changes in systemic pH underlie this inhibition, we measured Pi transport by renal cortical BBM from thyroparathyroidectomized rats with respiratory or metabolic acidosis of 1 or 3 h, respectively, and in appropriate controls. Also, Pi transport was measured in BBM prepared using tissue slices from nonacidotic rats that were preincubated for 20 or 45 min at either pH 6.9 (HCO3 = 10 mM, CO2 = 10%) or 7.4 (HCO3 = 10 mM, CO2 = 2.5%). Despite comparable acidemia (pH 7.06 +/- 0.05 with respiratory acidosis and 7.10 +/- 0.03 with metabolic acidosis), Na-dependent Pi uptake at 5 s incubation was reduced by 15.2 +/- 3.5% with respiratory acidosis compared with paired controls. It was not altered with metabolic acidosis. Vmax in respiratory acidosis (1.2 nmol X mg protein-1 X 5 s-1) was less than in controls (1.6); Kt was similar in both groups. 22Na transport and Na-dependent glucose transport were unchanged. Plasma phosphorus (P) increased from 8.75 +/- 0.35 mg/dl to 12.42 +/- 1.9 with respiratory acidosis. Therefore BBM vesicles transport was measured in controls after plasma P was raised. Under these conditions, Pi transport was similar to that with respiratory acidosis. Also Pi transport by BBM was unchanged when tissue slices were preincubated in vitro at high CO2 concentrations for 20 or 45 min. Thus respiratory acidosis specifically inhibits Na-dependent Pi transport by decreasing the number or rate of the BBM Pi carrier.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3