Specificity and modes of the anion exchanger in dog renal microvillus membranes

Author:

Guggino S. E.,Martin G. J.,Aronson P. S.

Abstract

The transport of various organic anions via the pathway that mediates the exchange of urate or p-aminohippurate (PAH) for OH- or Cl- in dog renal microvillus membrane vesicles was investigated. The pH gradient-stimulated uptakes of tracer urate and PAH were significantly inhibited by 5 mM PAH, n-valerate, lactate, beta-hydroxybutyrate, pyruvate, acetoacetate, maleate, succinate, alpha-ketoglutarate, oxaloacetate, and cis-aconitate but not by 5 mM acetate, malate, oxalate, or citrate. the pH dependence of inhibition suggested that it was in their monovalent forms that these acid anions interacted with the urate exchange pathway. Outwardly directed gradients of succinate, lactate, and PAH stimulated uphill urate accumulation. Imposition of an inside-alkaline pH gradient stimulated the uphill accumulation of lactate and succinate. Na+ cotransport pathways for lactate and succinate were also present. In the presence of an inwardly directed Na+ gradient, lactate stimulated the uphill accumulation of urate, indicating that the pathways mediating Na+-lactate cotransport and lactate-urate exchange coexisted in at least some membrane vesicles. We conclude that the anion exchange pathway for urate in dog renal microvillus membrane vesicles has affinity for additional organic anions and can function in multiple exchange modes. Exchange of luminal urate or Cl- for intracellular organic anions or OH- is a possible mechanism for effecting uphill anion reabsorption in the proximal tubule.

Publisher

American Physiological Society

Subject

Physiology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnsäure und Niere;Therapeutische Umschau;2016-03

2. The Molecular Physiology of Uric Acid Homeostasis;Annual Review of Physiology;2015-02-10

3. Regulation of Uric Acid Excretion by the Kidney;Current Rheumatology Reports;2012-02-23

4. Urine alkalization facilitates uric acid excretion;Nutrition Journal;2010-10-19

5. Uric Acid Metabolism and Uric Acid Stones;Urinary Tract Stone Disease;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3