Flow-dependent water permeability of the rabbit descending limb of Henle's loop

Author:

Miwa T.,Imai M.

Abstract

Because completely opposite results have been reported on the water permeability of the rabbit descending limbs of Henle's loop (DLH), we rigorously examined water permeability of the upper portion of the descending limb of the rabbit long-looped nephron. Even when the double-cannulation method was used in an attempt to reduce the resistance of tubular outflow, the collected fluid-to-perfusate inulin ratio was equal to or very close to the bathing fluid-to-perfusate osmolality ratio, indicating that osmotic equilibration occurred along the tubule by absorption of water. When perfusion rates were controlled by varying the height of the fluid reservoir connected to the perfusion pipette, osmotic (Pf) as well as diffusional (Pdw) water permeability was shown to be correlated with perfusion rate and/or perfusion pressure. Pf and Pdw at zero perfusion rate as determined from the values of the intercept of regression lines were 253 X 10(-3) and 4.54 X 10(-3) cm X s-1, respectively. The maximal values for Pf and Pdw were 737-1,098 X 10(-3) and 18.3 X 10(-3) cm X s-1, respectively. By changing the resistance to perfusion at the tubular outflow, it was shown that changes in Pf paralleled changes in perfusion rate rather than changes in perfusion pressure. Under stop-flow conditions the luminal fluid volume rapidly decreased after the osmolality of the bathing fluid was increased, suggesting that the segment is highly permeable to water even at zero flow rate. Reflection coefficients for urea and NaCl were 1.01 and 0.82, respectively. These data support the view that this segment is highly permeable to water and that increases in osmolality along the DLH in vivo may be accounted for mainly by abstraction of water rather than addition of solutes.

Publisher

American Physiological Society

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3