Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment

Author:

Schiffer Tomas A.12,Gustafsson Håkan2,Palm Fredrik1

Affiliation:

1. Department of Radiology Norrköping, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden

2. Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

Abstract

The kidneys receive ~25% of cardiac output, which is a prerequisite to maintain sufficient glomerular filtration rate. However, both intrarenal regional renal blood flow and tissue oxygen levels are heterogeneous with decreasing levels in the inner part of the medulla. These differences, in combination with the heterogeneous metabolic activity of the different nephron segment located in the different parts of the kidney, may constitute a functional problem when challenged. The proximal tubule and the medullary thick ascending limb of Henle are considered to have the highest metabolic rate, which is related to the high mitochondria content needed to sustain sufficient ATP production from oxidative phosphorylation to support high electrolyte transport activity in these nephron segments. Interestingly, the cells located in kidney medulla function at the verge of hypoxia, and the mitochondria may have adapted to the surrounding environment. However, little is known about intrarenal differences in mitochondria function. We therefore investigated functional differences between mitochondria isolated from kidney cortex and medulla of healthy normoglycemic rats by using high-resolution respirometry. The results demonstrate that medullary mitochondria had a higher degree of coupling, are more efficient, and have higher oxygen affinity, which would make them more suitable to function in an environment with limited oxygen supply. Furthermore, these results support the hypothesis that mitochondria of medullary cells have adapted to the normal hypoxic in vivo situation as a strategy of sustaining ATP production in a suboptimal environment.

Funder

Swedish Medical Research Council

the Swedish Diabetes Foundation

The Swedish Research Council

The Family Ernfors Foundation

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3