A decrease in renal medullary tonicity stimulates anion transport in Henle’s loop of rat kidneys

Author:

Capasso Giovambattista1,Saviano Caterina1,Ciani Francesca2,Lang Florian3,Russo Ferdinando2,De Santo Natale G.1

Affiliation:

1. Department of Nephrology, Second University of Naples, 80131 Naples;

2. Department of Structures, Function, and Biological Technology, University Federico II of Naples, 80100 Naples, Italy; and

3. Institute of Physiology, University of Tübingen, D-72076 Tübingen, Germany

Abstract

To investigate the effect of reduction in renal medulla osmolality on loop of Henle (LOH) net bicarbonate reabsorption, clearance and microperfusion experiments were performed on Sprague-Dawley rats. The decrease of renal medulla osmolality was induced by intravenous infusion of either a large dose of mannitol (mannitol protocol) or a hypotonic solution (hypotonic protocol) delivered at a rate to match the sodium and bicarbonate load of the control period. During the mannitol protocol, clearance data demonstrated a rise in glomerular filtration rate (GFR), renal plasma flow, urine pH, and fractional bicarbonate excretion. On the contrary, microperfusion experiments, performed in the absence of mannitol in the tubular perfusate, revealed a significant increase both in the absolute and fractional LOH bicarbonate transport. During the hypotonic protocol, there was a decrease in GFR, associated with an increase in fractional excretion of bicarbonate. In the microperfusion experiments, hypotonic saline, similar to mannitol, stimulated absolute and fractional LOH bicarbonate transport. Net reabsorption of chloride, measured under the same experimental conditions, was also found to be activated. Therefore, the intravenous infusion of hypotonic solution affected the LOH transepithelial net reabsorption of both bicarbonate and chloride. We hypothesize that the increase in the transport rate of these two anions, along the same segment and in similar experimental conditions, may be mediated, at least in part, by decreased medullary tonicity, which is one factor common both to hypertonic mannitol and hypotonic saline infusion.

Publisher

American Physiological Society

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3