Carbonic anhydrase II and IV mRNA in rabbit nephron segments: stimulation during metabolic acidosis

Author:

Tsuruoka Shuichi1,Kittelberger Ann M.1,Schwartz George J.1

Affiliation:

1. University of Rochester School of Medicine, Strong Children’s Research Center, Rochester, New York 14642

Abstract

Carbonic anhydrase (CA) facilitates renal bicarbonate reabsorption and acid excretion. Cytosolic CA II catalyzes the buffering of intracellular hydroxyl ions by CO2, whereas membrane-bound CA IV catalyzes the dehydration of carbonic acid generated from the secretion of protons. Although CA II and IV are expressed in rabbit kidney, it is not entirely clear which segments express which isoforms. It was the purpose of this study to characterize the expression of CA II and CA IV mRNAs by specific segments of the nephron using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and to determine the effect of chronic metabolic acidosis on CA expression by those segments. Individual nephron segments (usually 1–2 mm) were isolated by microdissection and subjected to RT-PCR. Amplification was performed simultaneously for CA IV, CA II, and malate dehydrogenase (MDH), a housekeeping gene. The intensities of the PCR products were quantitated by densitometry. CA IV mRNA was expressed by S1 and S2 proximal tubules and by outer medullary collecting duct from inner stripe (OMCDi) and outer stripe and initial inner medullary collecting duct (IMCDi). CA II mRNA was expressed by S1, S2, and S3 proximal tubules, thin descending limb, connecting segment (CNT), and all collecting duct segments. Acid loading induced CA IV mRNA expression in S1 and S2 proximal tubules and in OMCDi and IMCDi. CA II mRNA was induced by acidosis in all three proximal segments and nearly all distal segments beginning with CNT. No upregulation of MDH mRNA expression occurred. These adaptive increases in CA II and IV mRNAs are potentially important in the kidney’s adaptation to chronic metabolic acidosis.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3