A mathematical model of the inner medullary collecting duct of the rat: pathways for Na and K transport

Author:

Weinstein Alan M.1

Affiliation:

1. Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021

Abstract

A mathematical model of the inner medullary collecting duct (IMCD) of the rat has been developed representing Na+, K+, Cl,[Formula: see text] CO2, H2CO3, phosphate, ammonia, and urea. Novel model features include: finite rates of hydration of CO2, a kinetic representation of the H-K-ATPase within the luminal cell membrane, cellular osmolytes that are regulated in defense of cell volume, and the repeated coalescing of IMCD tubule segments to yield the ducts of Bellini. Model transport is such that when entering Na+ is 4% of filtered Na+, approximately 75% of this load is reabsorbed. This requirement renders the area-specific transport rate for Na+ comparable to that for proximal tubule. With respect to the luminal membrane, there is experimental evidence for both NaCl cotransport and an Na+ channel in parallel. The experimental constraints that transepithelial potential difference is small and that the fractional apical resistance is greater than 85% mandate that more than 75% of luminal Na+ entry be electrically silent. When Na+delivery is limited, an NaCl cotransporter can be effective at reducing luminal Na+ concentration to the observed low urinary values. Given the rate of transcellular Na+ reabsorption, there is necessarily a high rate of peritubular K+recycling; also, given the lower bound on luminal membrane Cl reabsorption, substantial peritubular Cl flux must be present. Thus, if realistic limits on cell membrane electrical resistance are observed, then this model predicts a requirement for peritubular electroneutral KCl exit.

Publisher

American Physiological Society

Subject

Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3