Regulation of the polymeric immunoglobulin receptor by water intake and vasopressin in the rat kidney

Author:

Rice James C.1,Spence Jeff S.1,Megyesi Judit1,Safirstein Robert L.1,Goldblum Randall M.1

Affiliation:

1. Departments of Internal Medicine and Pediatrics, University of Texas Medical Branch at Galveston, Galveston, Texas 77555

Abstract

The polymeric immunoglobulin receptor (pIgR) transports polymeric immunoglobulins (IgA) from the basolateral to the apical surface of epithelial cells. At the apical surface, its amino-terminal domain, termed secretory component (SC), is proteolytically cleaved and released either unbound (free SC) or bound to IgA. We examined the effects of changes in water balance and vasopressin on the production and secretion of the pIgR in the rat kidney in vivo. Water deprivation induced a 2.7-fold increase in the pIgR mRNA and a 2.2-fold increase in intracellular pIgR protein compared with water-loaded animals. Physiological doses of desmopressin reproduced the effects of water deprivation on mRNA and intracellular protein levels, suggesting that pIgR expression may be regulated by a vasopressin-coupled mechanism. Secretion of free SC and secretory IgA in the urine, however, correlated directly with water intake and urine flow. These results suggest that hydration status and vasopressin may affect the mucosal immunity of the kidney by regulating at different steps the epithelial cell production and secretion of the polymeric immunoglobulin transporter/secretory component.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3