Effects of acute AT1 receptor blockade by candesartan on arterial pressure and renal function in rats

Author:

Cervenka Ludek1,Wang Chi-Tarng1,Navar L. Gabriel1

Affiliation:

1. Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112

Abstract

Experiments were performed on normal anesthetized rats to determine the effects of candesartan, a novel AT1 receptor antagonist, on the arterial pressure and renal hemodynamic responses to bolus doses of angiotensin II (ANG II) and on renal hemodynamics and sodium excretion. Control arterial pressure responses to bolus ANG II doses of 10, 50, 100 and 1,000 ng were 26 ± 6, 54 ± 7, 57 ± 7, and 79 ± 7 mmHg; the decreases in cortical renal blood flow (CRBF), measured with laser-Doppler flowmetry, were 47 ± 9, 64 ± 8, 71 ± 6, and 82 ± 6%. The vasoconstrictor responses to ANG II up to 1,000 ng were completely blocked by candesartan doses of 1 and 0.1 mg/kg, whereas treatment with 0.01 mg/kg candesartan attenuated the arterial pressure and CRBF responses. The higher doses of candesartan (1 and 0.1 mg/kg) elicited rapid decreases in arterial pressure, leading to associated decreases in sodium excretion. Renal blood flow (RBF), glomerular filtration rate (GFR), and urine flow also decreased following treatment with candesartan at 1 mg/kg. In contrast, when candesartan was given at 0.01 mg/kg, which did not decrease arterial pressure significantly, there were significant increases in GFR (16 ± 4), RBF (9 ± 2), urine flow (11 ± 2), sodium excretion (35 ± 7), and fractional sodium excretion (39 ± 8%). The inability to overcome blockade, even with very high ANG II doses, indicates that candesartan is a potent noncompetitive blocker of ANG II pressor and renal vasoconstrictor effects. The lower candesartan dose that did not cause significant hypotension elicited substantial increases in RBF, GFR, and sodium excretion, revealing the direct renal vasodilator and natriuretic effects of AT1 receptor blockade.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3