Extracellular matrix-related genes in kidney after ischemic injury: potential role for TGF-β in repair

Author:

Basile David P.1,Martin Daniel R.1,Hammerman Marc R.1

Affiliation:

1. George M. O’Brien Kidney and Urological Disease Center, Renal Division, Departments of Medicine and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

The renal expression of transforming growth factor-β1 (TGF-β1) is enhanced following induction of ischemic injury in rat. In cultured renal cells, TGF-β stimulates the synthesis of extracellular matrix. To link TGF-β1 expression with the regulation of extracellular matrix postischemia, we characterized the expression of several genes known to regulate extracellular matrix synthesis at various times during recovery from acute ischemic renal injury in rat. Levels of mRNA for plasminogen activator inhibitor-1 (PAI-1), tissue inhibitor of metalloprotease-1 (TIMP-1), α1(IV) collagen, and fibronectin-EIIIA (FN-EIIIA) mRNAs were significantly enhanced in kidneys within 12 h to 3 days after injury and remained elevated at 7–28 days postischemia relative to levels in kidneys of sham-operated controls. PAI-1 mRNA and peptide were localized in regenerating proximal tubules at 3 and 7 days postischemic injury. α1(IV) Collagen and FN-EIIIA mRNAs were expressed primarily in regenerating proximal tubule cells. Immunoreactivity for FN-EIIIA was enhanced in the tubular basement membrane (TBM) of regenerating proximal tubules, and α1(IV) collagen immunoreactivity was detected in thickened tubulointerstitial spaces. In contrast, TIMP-1 immunoreactivity was enhanced in distal nephron structures postischemia. Immunoneutralization of TGF-β in vivo attenuated the increases in FN-EIIIA, α1(IV) collagen, PAI-1, and TIMP-1 mRNAs by 52%, 73%, 43%, and 27%, respectively. These data are consistent with TGF-β expression postischemic injury participating in renal regeneration of extracellular matrix homeostasis in the proximal TBM.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3