Tensin2 is important for podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier

Author:

Uchio-Yamada Kozue1,Yasuda Keiko2,Monobe Yoko3,Akagi Ken-ichi3,Suzuki Osamu1,Manabe Noboru4

Affiliation:

1. Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan

2. Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

3. Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan

4. Department of Human Sciences, Osaka International University, Moriguchi, Osaka, Japan

Abstract

Tensin2 (Tns2), an integrin-linked protein, is enriched in podocytes within the glomerulus. Previous studies have revealed that Tns2-deficient mice exhibit defects of the glomerular basement membrane (GBM) soon after birth in a strain-dependent manner. However, the mechanisms for the onset of defects caused by Tns2 deficiency remains unidentified. Here, we aimed to determine the role of Tns2 using newborn Tns2-deficient mice and murine primary podocytes. Ultrastructural analysis revealed that developing glomeruli during postnatal nephrogenesis exhibited abnormal GBM processing due to ectopic laminin-α2 accumulation followed by GBM thickening. In addition, analysis of primary podocytes revealed that Tns2 deficiency led to impaired podocyte-GBM interaction and massive expression of laminin-α2 in podocytes. Our study suggests that weakened podocyte-GBM interaction due to Tns2 deficiency causes increased mechanical stress on podocytes by continuous daily filtration after birth, resulting in stressed podocytes ectopically producing laminin-α2, which interrupts GBM processing. We conclude that Tns2 plays important roles in the podocyte-GBM interaction and maintenance of the glomerular filtration barrier.

Funder

Japan Society for the Promotion of Science

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3