Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model

Author:

Singh Ruchira,Wangemann Philine

Abstract

Pendred syndrome is due to loss-of-function mutations of Slc26a4, which codes for the HCO3 transporter pendrin. Loss of pendrin causes deafness via a loss of the K+ channel Kcnj10 in stria vascularis and consequent loss of the endocochlear potential. Pendrin and Kcnj10 are expressed in different cell types. Here, we report that free radical stress provides a link between the loss of Kcnj10 and the loss of pendrin. Studies were performed using native and cultured stria vascularis from Slc26a4+/− and Slc26a4−/− mice as well as Chinese hamster ovary (CHO)-K1 cells. Kcnj10, oxidized proteins, and proteins involved in iron metabolism were quantified by Western blotting. Nitrated proteins were quantified by ELISA. Total iron was measured by ferrozine spectrophotometry and gene expression was quantified by qRT-PCR. At postnatal day 10 ( P10), stria vascularis from Slc26a4+/− and Slc26a4−/− mice expressed similar amounts of Kcnj10. Slc26a4−/− mice lost Kcnj10 expression during the next 5 days of development. In contrast, stria vascularis, obtained from P10 Slc26a4−/− mice and kept in culture for 5 days, maintained Kcnj10 expression. Stria vascularis from Slc26a4−/− mice was found to suffer from free radical stress evident by elevated amounts of oxidized and nitrated proteins and other changes in protein and gene expression. Free radical stress induced by 3-morpholinosydnonimine- N-ethylcarbamide was found to be sufficient to reduce Kcnj10 expression in CHO-K1 cells. These data demonstrate that free radical stress provides a link between loss of pendrin and loss of Kcnj10 in Slc26a4−/− mice and possibly in human patients suffering from Pendred syndrome.

Publisher

American Physiological Society

Subject

Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3