Affiliation:
1. Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
Abstract
Effects of low salt (LS) on (pro)renin receptor (PRR) expression are not well established. We hypothesized that LS enhances renal PRR expression via the cGMP-protein kinase G (PKG) signaling pathway. Sprague-Dawley rats were fed a normal-salt (NS) or LS diet associated with intrarenal cortical administration of vehicle (V), the nitric oxide (NO) synthase inhibitor nitro-l-arginine methyl ester (l-NAME), the NO donor S-nitroso- N-acetyl-dl-penicillamine (SNAP), the cGMP analog 8-bromoguanosine (8-Br)-cGMP, the guanylyl cyclase inhibitor 1H-[1, 2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), or a PKG inhibitor (PKGi) for 6 days via osmotic minipump. We evaluated the effects of each treatment on renal interstitial fluid (RIF) levels of nitrate/nitrite and cGMP and renal PRR expression. There were no significant changes in blood pressure with any of the treatments. Urinary sodium excretion was significantly lower in rats given a LS diet. Compared with NS + V, RIF nitrate/nitrite and cGMP levels increased in LS + V rats. In NS groups, RIF nitrate/nitrite and cGMP levels did not change with l-NAME, ODQ, or PKGi and increased in response to SNAP. 8-Br-cGMP increased RIF cGMP but not RIF nitrate/nitrite. In LS groups, RIF nitrate/nitrite decreased with l-NAME and did not change with ODQ or PKGi whereas RIF cGMP decreased with l-NAME, ODQ, and PKGi. PRR mRNA and protein increased in LS + V. In NS rats, PRR mRNA and protein increased in response to 8-Br-GMP and were not affected by any of other treatments. In LS rats, PRR mRNA and protein decreased significantly in response to l-NAME, ODQ, and PKGi. We conclude that LS intake enhances renal expression of PRR via cGMP-PKG signaling pathway.
Publisher
American Physiological Society
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献