Author:
Watts Bruns A.,Good David W.
Abstract
Absorption of HCO3− in the medullary thick ascending limb (MTAL) is mediated by apical membrane Na+/H+ exchange. The identity and function of other apical acid-base transporters in this segment have not been defined. The present study was designed to examine apical membrane HCO3−/OH−/H+ transport pathways in the rat MTAL and to determine their role in transepithelial HCO3− absorption. MTALs were perfused in vitro in Na+- and Cl−-free solutions containing 25 mM HCO3−, 5% CO2. Lumen addition of either 120 mM Cl− or 50 mM Na+ (50 μM EIPA present) had no effect on intracellular pH (pHi). Lumen Cl− addition also had no effect on pHi in the presence of 145 mM Na+ or in the nominal absence of HCO3−/CO2. Thus there was no evidence for apical Cl−/HCO3− (OH−) exchange, Na+-dependent Cl−/HCO3− exchange, or Na+-HCO3− cotransport. In contrast, in tubules studied in Na+- and Cl−-free solutions containing 25 mM HCO3−, 5% CO2 and 120 mM K+, removal of luminal K+ induced a rapid and pronounced decrease in pHi (ΔpHi = 0.56 ± 0.06 pH U). pHi recovered following lumen K+ readdition. The initial rate of net base efflux induced by lumen K+ removal was decreased 85% at the same pHi in the nominal absence of HCO3−/CO2, indicating a dependence on HCO3−/CO2 and arguing against apical K+/H+ exchange. A combination of the apical K+ channel blockers quinidine (0.1 mM) and glybenclamide (0.25 mM) had no effect on the lumen K+-induced pHi changes, arguing against electrically coupled K+ and HCO3− conductances. The effect of lumen K+ on pHi was inhibited by 1 mM H2DIDS. In addition, lumen addition of DIDS increased transepithelial HCO3− absorption from 10.7 ± 0.7 to 14.9 ± 0.7 pmol·min−1·mm−1 ( P < 0.001) and increased pHi slightly in MTAL studied in physiological solutions (25 mM HCO3− and 4 mM K+). Lumen DIDS stimulated HCO3− absorption in the absence and presence of furosemide. These results are consistent with an apical membrane K+-dependent HCO3− transport pathway that mediates coupled transfer of K+ and HCO3− from cell to lumen in the MTAL. This mechanism, possibly an apical K+-HCO3− cotransporter, functions in parallel with apical Na+/H+ exchange and opposes transepithelial HCO3− absorption.
Publisher
American Physiological Society
Reference42 articles.
1. Immunolocalization of AE2 anion exchanger in rat kidney
2. Alpern RJ. Renal acidification mechanisms. In: The Kidney, edited by Brenner BM. Philadelphia, PA: Saunders, vol. I, 2000, p. 455–519.
3. Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb
4. Apical Location and Inhibition by Arginine Vasopressin of K+/H+ Antiport of the Medullary Thick Ascending Limb of Rat Kidney
5. Biemesderfer D, Rutherford PA, Nagy T, Pizzonia JH, Abu-Alfa AK, and Aronson PS. Monoclonal antibodies for high-resolution localization of NHE3 in adult and neonatal rat kidney. Am J Physiol Renal Physiol 273: F289–F299, 1997.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献