Knockout of P2rx7 purinergic receptor attenuates cyst growth in a rat model of ARPKD

Author:

Arkhipov Sergey N.1,Potter D’Anna L.1,Geurts Aron M.2,Pavlov Tengis S.1ORCID

Affiliation:

1. Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan

2. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin

Abstract

The severity of polycystic kidney diseases (PKD) depends on the counterbalancing of genetic predisposition and environmental factors exerting permissive or protective influence on cyst development. One poorly characterized phenomenon in the cystic epithelium is abnormal purinergic signaling. Earlier experimental studies revealed the high importance of the ionotropic P2X receptors (particularly, P2X7) in the pathophysiology of the cyst wall. To study mechanisms of P2X7 involvement in cyst growth and aspects of targeting these receptors in PKD treatment we performed a CRISPR/SpCas9-mediated global knockout of the P2rx7 gene in PCK rats, a model of autosomal recessive PKD (ARPKD). A single base insertion in exon 2 of the P2rx7 gene in the renal tissues of homozygous mutant animals leads to lack of P2X7 protein that did not affect their viability or renal excretory function. However, PCK. P2rx7 rats demonstrated slower cyst growth (but not formation of new cysts) compared with heterozygous and PCK. P2rx7+ littermates. P2X7 receptors are known to activate pannexin-1, a plasma channel capable of releasing ATP, and we found here that pannexin-1 expression in the cystic epithelium is significantly higher than in nondilated tubules. P2X7 deficiency reduces renal pannexin-1 protein expression and daily urinary ATP excretion. Patch-clamp analysis revealed that lack of P2X7 increases epithelial sodium channel activity in renal tissues and restores impaired channel activity in cysts. Interpretation of our current data in the context of earlier studies strongly suggests that P2X7 contributes to cyst growth by increasing pannexin-1-dependent pathogenic ATP release into the lumen and reduction of sodium reabsorption across the cyst walls.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

American Society of Nephrology

PKD Foundation

Publisher

American Physiological Society

Subject

Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3