Podocytes exhibit a specialized protein quality control employing derlin-2 in kidney disease

Author:

Ren Guohui1,Tardi Nicholas J.1,Matsuda Fumihiko2,Koh Kwi Hye1,Ruiz Phillip3,Wei Changli1,Altintas Mehmet M.1ORCID,Ploegh Hidde4,Reiser Jochen1ORCID

Affiliation:

1. Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois

2. Division of Nephrology, University of Miami, Miami, Florida

3. Department of Surgery, University of Miami School of Medicine, Miami, Florida

4. Department of Biology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts

Abstract

Podocytes are terminally differentiated cells of the kidney filtration barrier with a limited proliferative capacity and are the primary glomerular target for various sources of cellular stress. Accordingly, it is particularly important for podocytes to cope with stress efficiently to circumvent cell death and avoid compromising renal function. Improperly folded proteins within the endoplasmic reticulum (ER) are associated with increased cellular injury and cell death. To relieve ER stress, protein quality control mechanisms like ER-associated degradation (ERAD) are initiated. Derlin-2 is an important dislocation channel component in the ERAD pathway, having an indispensable role in clearing misfolded glycoproteins from the ER lumen. With studies linking ER stress to kidney disease, we investigated the role of derlin-2 in the susceptibility of podocytes to injury due to protein misfolding. We show that podocytes employ derlin-2 to mediate the ER quality control system to maintain cellular homeostasis in both mouse and human glomeruli. Patients with focal segmental glomerulosclerosis (FSGS) or diabetic nephropathy (DN) upregulate derlin-2 expression in response to glomerular injury, as do corresponding mouse models. In derlin-2-deficient podocytes, compensatory responses were lost under adriamycin (ADR)-induced ER dysfunction, and severe cellular injury ensued via a caspase-12-dependent pathway. Moreover, derlin-2 overexpression in vitro attenuated ADR-induced podocyte injury. Thus derlin-2 is part of a protein quality control mechanism that can rescue glomerular injury attributable to impaired protein folding pathways in the ER. Induction of derlin-2 expression in vivo may have applications in prevention and treatment of glomerular diseases.

Funder

None

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3