AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct

Author:

Odgaard Elvin,Praetorius Helle A.,Leipziger Jens

Abstract

Extracellular nucleotides are local, short-lived signaling molecules that inhibit renal tubular transport via both luminal and basolateral P2 receptors. Apparently, the renal epithelium itself is able to release nucleotides. The mechanism and circumstances under which nucleotide release is stimulated remain elusive. Here, we investigate the phenomenon of nucleotide secretion in intact, perfused mouse medullary thick ascending limb (mTAL) and cortical collecting duct (CCD). The nucleotide secretion was monitored by a biosensor adapted to register nucleotides in the tubular outflow. Intracellular Ca2+concentration ([Ca2+]i) was measured simultaneously in the biosensor cells and the renal tubule with fluo 4. We were able to identify spontaneous tubular nucleotide secretion in resting perfused mTAL. In this preparation, 10 nM AVP and 1-desamino-8-d-arginine vasopressin (dDAVP) induced robust [Ca2+]ioscillations, whereas AVP in the CCD induced large, slow, and transient [Ca2+]ielevations. Importantly, we identify that AVP/dDAVP triggers tubular secretion of nucleotides in the mTAL. After addition of AVP/dDAVP, the biosensor registered bursts of nucleotides in the tubular perfusate, corresponding to a tubular nucleotide concentration of ∼0.2–0.3 μM. A very similar response was observed after AVP stimulation of CCDs. Thus AVP stimulated tubular secretion of nucleotides in a burst-like pattern with peak tubular nucleotide concentrations in the low-micromolar range. We speculate that local nucleotide signaling is an intrinsic feedback element of hormonal control of renal tubular transport.

Publisher

American Physiological Society

Subject

Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3