Affiliation:
1. Department of Medicine, University Hospital, University of British Columbia, Vancouver, British Columbia V6T 1Z3; and
2. Departments of Medicine, Physiology and Human Genetics, McGill University and Royal Victoria Hospital, Montreal, Quebec, Canada H3A 1A1
Abstract
The distal convoluted tubule plays a significant role in renal magnesium conservation. Although the cells of the distal convoluted tubule possess the vitamin D receptor, little is known about the effects of 1α,25-dihydroxyvitamin D [1,25(OH)2D3] on magnesium transport. In this study, we examined the effect of 1,25(OH)2D3 on distal cellular magnesium uptake and the modulation of this response by extracellular Ca2+and Mg2+ in an immortalized mouse distal convoluted tubule (MDCT) cell line. MDCT cells possess the divalent cation-sensing receptor (CaSR) that responds to elevation of extracellular Ca2+ and Mg2+ concentrations to diminish peptide hormone-stimulated Mg2+ uptake. Mg2+uptake rates were determined by microfluorescence in Mg2+-depleted MDCT cells. Treatment of MDCT cells with 1,25(OH)2D3 for 16–24 h stimulated basal Mg2+ uptake in a concentration-dependent manner from basal levels of 164 ± 5 to 210 ± 11 nM/s, representing a 28 ± 3% change. Pretreatment with actinomycin D or cycloheximide abolished 1,25(OH)2D3-stimulated.Mg2+uptake (154 ± 18 nM/s), suggesting that 1,25(OH)2D3 stimulates Mg2+ uptake through gene activation and protein synthesis. Elevation of extracellular Ca2+ inhibited 1,25(OH)2D3-stimulated Mg2+ uptake (143 ± 5 nM/s). Preincubation of the cells with an antibody to the CaSR prevented the inhibition by elevated extracellular Ca2+ of 1,25(OH)2D3-stimulated Mg2+ uptake (202 ± 8 nM/s). Treatment with an antisense CaSR mRNA oligodeoxynucleotide also abolished the effects of extracellular Ca2+ on 1,25(OH)2D3-responsive Mg2+ entry. This showed that elevated extracellular calcium modulates 1,25(OH)2D-mediated responses through the CaSR. In summary, 1,25(OH)2D3 stimulated Mg2+ uptake in MDCT cells, and this is dependent on de novo protein synthesis. Elevation of extracellular Ca2+, acting via the CaSR, inhibited 1,25(OH)2D3-stimulated Mg2+ entry. These data indicate that 1,25(OH)2D3 has important effects on the control of magnesium entry in MDCT cells and these responses can be modulated by extracellular divalent cations.
Publisher
American Physiological Society
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献