Affiliation:
1. Divisions of Hypertension and
2. Department of Physiology and Biophysics, and
3. Biomathematics Resource, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
4. Cardiovascular Diseases, Department of Internal Medicine,
Abstract
To assess the reliability of electron beam computed tomography (EBCT), measurements of single-kidney renal blood flow (RBF), glomerular filtration rate (GFR), and intratubular contrast medium concentration (ITC) of radiographic contrast media were quantified in anesthetized pigs before and after acetylcholine-induced vasodilation and diuresis. EBCT measurements were compared with those obtained with intravascular Doppler and inulin clearance. The capability of EBCT to detect chronic changes in single-kidney function was evaluated in pigs with unilateral renal artery stenosis, and their long-term reproducibility in normal pigs was studied repeatedly at 1-mo intervals. EBCT-RBF (ml/min) correlated with Doppler-RBF as RBFEBCT = 45 + 1.07 ∗ RBFDoppler, r = 0.81. EBCT-GFR (ml/min) correlated with inulin clearance as GFREBCT = 11.7 + 1.02 ∗ GFRinulin, r = 0.80. During vasodilation, RBF and GFR increased, whereas ITC decreased along the nephron. In renal artery stenosis, single-kidney GFR decreased linearly with the degree of stenosis, and ITC increased along the nephron, indicating increased fluid reabsorption. EBCT-RBF, GFR, and ITC were similar among repeated measurements. This approach might be invaluable for simultaneous quantification of regional hemodynamics and function in the intact kidneys, in a manner potentially applicable to humans.
Publisher
American Physiological Society
Cited by
145 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献