Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function

Author:

Krier James D.1,Ritman Erik L.2,Bajzer Zeljko3,Romero J. Carlos2,Lerman Amir4,Lerman Lilach O.1

Affiliation:

1. Divisions of Hypertension and

2. Department of Physiology and Biophysics, and

3. Biomathematics Resource, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905

4. Cardiovascular Diseases, Department of Internal Medicine,

Abstract

To assess the reliability of electron beam computed tomography (EBCT), measurements of single-kidney renal blood flow (RBF), glomerular filtration rate (GFR), and intratubular contrast medium concentration (ITC) of radiographic contrast media were quantified in anesthetized pigs before and after acetylcholine-induced vasodilation and diuresis. EBCT measurements were compared with those obtained with intravascular Doppler and inulin clearance. The capability of EBCT to detect chronic changes in single-kidney function was evaluated in pigs with unilateral renal artery stenosis, and their long-term reproducibility in normal pigs was studied repeatedly at 1-mo intervals. EBCT-RBF (ml/min) correlated with Doppler-RBF as RBFEBCT = 45 + 1.07 ∗ RBFDoppler, r = 0.81. EBCT-GFR (ml/min) correlated with inulin clearance as GFREBCT = 11.7 + 1.02 ∗ GFRinulin, r = 0.80. During vasodilation, RBF and GFR increased, whereas ITC decreased along the nephron. In renal artery stenosis, single-kidney GFR decreased linearly with the degree of stenosis, and ITC increased along the nephron, indicating increased fluid reabsorption. EBCT-RBF, GFR, and ITC were similar among repeated measurements. This approach might be invaluable for simultaneous quantification of regional hemodynamics and function in the intact kidneys, in a manner potentially applicable to humans.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3