Affiliation:
1. Nephrology and Hypertension Services, Hadassah University Hospital, Jerusalem, Israel 91120; and
2. Nephrology Section, The University of Texas Southwestern Medical Center and Dallas Veterans Affairs Medical Center, Dallas, Texas 75216
Abstract
Acute administration of dihydroxycholecalciferol [1,25(OH)2D3] blunts phosphaturia and increases urinary cAMP excretion in parathyroid hormone (PTH)-infused parathyroidectomized (PTX) rats. Because chronic administration of 1,25(OH)2D3 enhances the phosphaturic response to exogenous parathyroid hormone despite blunting of urinary cAMP excretion, we have examined the expression of the renal cortex type II Na-Pi cotransporter (NaPi-2) mRNA and protein in 1) chronic PTX Sabra rats, 2) PTX rats receiving a physiological dose of 1,25(OH)-2-D3, 3) PTX rats receiving 35 ng/h of PTH, and 4) rats receiving both PTH and 1,25(OH)2D3, for 7 days via osmotic minipumps. Our results confirm that there is increased phosphaturia in the PTH+1,25(OH)2D3-infused animals despite blunting of urinary cAMP excretion, a reduced filtered load of phosphate, and lack of a phosphaturic effect by 1,25(OH)2D3 alone. Both PTH and 1,25(OH)2D3 significantly reduced expression of renal cortex NaPi-2 mRNA and NaPi-2 protein, and the administration of PTH together with 1,25(OH)2D3 had additive effects in further decreasing NaPi-2 mRNA and NaPi-2 protein levels. Expression of two other epithelial transporters, type 1 Na-sulfate and type 1 Na-glucose cotransporters, were not different between the groups, suggesting specificity of the effects of PTH and 1,25(OH)2D3 on phosphate transport. The effect of chronic administration of 1,25(OH)2D3 has not been noted previously, and the cellular mechanisms and signaling processes that mediate the decrease in NaPi-2 remain to be determined.
Publisher
American Physiological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献