In vitro phosphorylation of COOH termini of the epithelial Na+ channel and its effects on channel activity inXenopus oocytes

Author:

Chigaev Alexander1,Lu Gang1,Shi Haikun1,Asher Carol1,Xu Rong2,Latter Hedva1,Seger Rony3,Garty Haim1,Reuveny Eitan1

Affiliation:

1. Departments of Biological Chemistry,

2. Immunology, and

3. Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

Recent findings have suggested the involvement of protein phosphorylation in the regulation of the epithelial Na+ channel (ENaC). This study reports the in vitro phosphorylation of the COOH termini of ENaC subunits expressed as glutathione S-transferase fusion proteins. Channel subunits were specifically phosphorylated by kinase-enriched cytosolic fractions derived from rat colon. The phosphorylation observed was not mediated by the serum- and glucocorticoid-regulated kinase sgk. For the γ-subunit, phosphorylation occurred on a single, well-conserved threonine residue located in the immediate vicinity of the PY motif (T630). The analogous residue on β(S620) was phosphorylated as well. The possible role of γT630 and βS620 in channel function was studied in Xenopus laevis oocytes. Mutating these residues to alanine had no effect on the basal channel-mediated current. They do, however, inhibit the sgk-induced increase in channel activity but only in oocytes that were preincubated in low Na+ and had a high basal Na+ current. Thus mutating γT630 or βS620 may limit the maximal channel activity achieved by a combination of sgk and low Na+.

Publisher

American Physiological Society

Subject

Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3