Application of difference gel electrophoresis to the identification of inner medullary collecting duct proteins

Author:

Hoffert Jason D.1,van Balkom Bas W. M.1,Chou Chung-Lin1,Knepper Mark A.1

Affiliation:

1. Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892

Abstract

In this study, we present a standardized approach to purification of native inner medullary collecting duct (IMCD) cells from rat kidney for proteomic analysis and apply the approach to identification of abundant proteins utilizing two-dimensional difference gel electrophoresis (DIGE) coupled with matrix-assisted laser desorption-ionization-time of flight mass spectrometry. Fractionation of inner medullary cell suspensions by low-speed centrifugation gave a highly purified IMCD cell fraction in which aquaporin-2 was enriched 10-fold. When DIGE was initially applied to rat inner medullas fractionated into IMCD cells (labeled with Cy3) and non-IMCD cells (labeled with Cy5), we identified 50 highly abundant proteins expressed in the IMCD cells. These proteins, identifiable without subcellular fractionation, included chiefly enzymes, structural proteins, and signaling intermediates. An additional 35 proteins were found predominantly in the non-IMCD cell types. Proteins that were highly enriched in the IMCD fraction included cytokeratin 8, cytokeratin 18, transglutaminase II, aminopeptidase B, T-plastin, heat shock protein (HSP) 27, HSP70, and lactate dehydrogenase A. Semiquantitative immunoblotting and immunohistochemistry confirmed relative expression levels and distribution of selected proteins. An additional 40 IMCD proteins were identified in separate experiments aimed at further enrichment of proteins through optimization of sample loading. These studies document the applicability of a standardized approach to purification of IMCD cells for proteomic analysis of IMCD proteins and demonstrate the feasibility of largescale identification of proteins in the native IMCD cell.

Publisher

American Physiological Society

Subject

Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3