Impaired glomerular and tubular antioxidative defense mechanisms in nephrotic syndrome

Author:

Granqvist Anna1,Nilsson Ulf A.1,Ebefors Kerstin1,Haraldsson Börje1,Nyström Jenny1

Affiliation:

1. Institute of Medicine, Department of Molecular and Clinical Medicine (Nephrology), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden

Abstract

The molecular mechanisms behind acquired nephrotic syndrome (NS) are still largely unknown. One possible explanation for the development of proteinuria is oxidative damage to the glomerular cells. Our hypothesis was that the oxidative defense is weakened in NS, and we focused on measurements of the oxidative-antioxidative status in the glomerular and tubular parts of the nephron. Gene expression was analyzed in renal biopsies from patients with NS. In addition, to compare the acute and chronic phases of the disease, we studied puromycin-treated rats. In the biopsy material, the expression of enzymes involved in the antioxidative defense was higher in the tubulointerstitial compartment than in the glomerular cells. Real-time PCR analysis revealed a decreased glomerular expression in nephrotic kidneys for the antioxidant enzymes catalase and glutathione peroxidase-3, and -4. The tubular gene expression was downregulated for catalase, glutathione peroxidase-3, and thioredoxin reductase-1 and -2. The altered gene expression was accompanied by increased lipid peroxidation in urine. In rats, serum concentrations of ascorbyl-free radicals, measured with electron spin resonance, were elevated in the acute phase of the disease, suggesting increased oxidative stress in the circulation. In addition, we saw an increase in the plasma antioxidant capacity combined with a decreased oxidation of proteins in sera from nephrotic rats, but not from humans. In conclusion, there is a marked downregulation of several antioxidative enzymes in nephrotic kidneys, especially in glomerular structures. Our data suggest that oxidative damage to glomerular cells may contribute significantly to the course and prognosis of nephrotic syndrome.

Publisher

American Physiological Society

Subject

Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3