Altered expression of renal apical plasma membrane Na+transporters in the early phase of genetic hypertension

Author:

Capasso Giovambattista,Rizzo Maria,Evangelista Ciriana,Ferrari Patrizia,Geelen Ghislaine,Lang Florian,Bianchi Giuseppe

Abstract

The present study explores whether the development of hypertension in the Milan strain of rats (MHS) rats is preceded or paralleled by alterations of mRNA and/or protein levels of the major luminal Na+transporters. MHS rats were studied at 23–25 days after birth; age-matched Milan normotensive (MNS) rats were used as controls. The glomerular filtration rate (GFR), measured by inulin clearance, was higher in MHS than in MNS rats, while the mean blood pressure was not different in the two strains of animals indicating that the MHS rats were still in the prehypertensive state. Type 3 sodium/hydrogen exchanger (NHE3), bumetanide-sensitive sodium-potassium-2 chloride cotransporter (NKCC2), sodium-chloride cotransporter (NCC) and α-ENaC mRNA abundances were quantified by competitive PCR. In MHS compared with MNS, mRNA abundance was unchanged for NHE3 in proximal tubules, higher for NKCC2 in medullary thick ascending limbs of Henle's loops (TAL) and lower for NCC in distal convoluted tubules (DCT) and for α-ENaC along collecting ducts (CD). Western blot experiments revealed 1) unchanged NHE3; 2) a significant increase in NKCC2 in the outer medulla; 3) a significant decrease in NCC in the renal cortex and of α-ENaC in both the renal cortex and outer medulla, whereas β- and γ-ENaC remained unchanged. These data indicate that, in MHS rats, there is a strong upregulation of NKCC2 along the TAL associated with increased GFR, robust inhibition of NCC cotransporter along the DCT and modest downregulation of α-ENaC along the CD. The interplay of the various Na+transporters may well explain why, at this age, the rats are still in the prehypertensive state.

Publisher

American Physiological Society

Subject

Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3