Hypertensive female Sprague-Dawley rats require an intact nitric oxide synthase system for compensatory increases in renal regulatory T cells

Author:

Ramirez Lindsey A.1,Gillis Ellen E.1,Musall Jacqueline B.1,Mohamed Riyaz1,Snyder Elizabeth1,El-Marakby Ahmed2,Sullivan Jennifer C.1

Affiliation:

1. Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia

2. Dental College of Georgia, Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, Georgia

Abstract

We have previously shown that hypertensive female rats have more regulatory T cells (Tregs), which contribute more to blood pressure (BP) control in female versus male rats. Based on known protective properties of Tregs, the goal of the present study was to investigate the mechanisms by which female rats maintain Tregs. The present study was designed to 1) compare the impact of three hypertension models on the percentage of renal Tregs and 2) test the hypothesis that nitric oxide synthase (NOS) inhibition prevents increases in renal Tregs and exacerbates renal damage in female Sprague-Dawley rats. Rats (11–14 wk old) were randomized to one of the following four groups: control, norepinephrine (NE) infusion, angiotensin II infusion, or the NOS inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) in drinking water. BP was measured via tail cuff. After 2 wk of treatment, kidneys were isolated and processed to measure Tregs via flow cytometric analysis and renal injury via urinary albumin excretion, plasma creatinine, and histological analyses. Hypertensive treatments increased BP in all experimental animals. Increases in BP in norepinephrine-and angiotensin II-treated rats were associated with increases in renal Tregs versus control. In contrast, l-NAME treatment decreased Tregs compared with all groups. l-NAME treatment modestly increased albumin excretion. However, plasma creatinine was comparable among the groups, and there was no histological evidence of glomerular or tubular injury. This study provides insights into the mechanisms regulating renal Tregs and supports that an intact NOS system is crucial for female rats to have BP-related increases in renal Tregs.

Funder

NIH

American Heart Association

Publisher

American Physiological Society

Subject

Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3