Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells

Author:

Alnasser Hatem A.1,Guan Qiunong12,Zhang Fan3,Gleave Martin E.13,Nguan Christopher Y. C.1,Du Caigan12

Affiliation:

1. Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada;

2. Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; and

3. Vancouver Prostate Centre, Vancouver, British Columbia, Canada

Abstract

Cellular autophagy is a prosurvival mechanism in the kidney against ischemia-reperfusion injury (IRI), but the molecular pathways that activate the autophagy in ischemic kidneys are not fully understood. Clusterin (CLU) is a chaperone-like protein, and its expression is associated with kidney resistance to IRI. The present study investigated the role of CLU in prosurvival autophagy in the kidney. Renal IRI was induced in mice by clamping renal pedicles at 32°C for 45 min. Hypoxia in renal tubular epithelial cell (TEC) cultures was induced by exposure to a 1% O2 atmosphere. Autophagy was determined by either light chain 3-BII expression with Western blot analysis or light chain 3-green fluorescent protein aggregation with confocal microscopy. Cell apoptosis was determined by flow cytometric analysis. The unfolded protein response was determined by PCR array. Here, we showed that autophagy was significantly activated by IRI in wild-type (WT) but not CLU-deficient kidneys. Similarly, autophagy was activated by hypoxia in human proximal TECs (HKC-8) and WT mouse primary TECs but was impaired in CLU-null TECs. Hypoxia-activated autophagy was CLU dependent and positively correlated with cell survival, and inhibition of autophagy significantly promoted cell death in both HKC-8 and mouse WT/CLU-expressing TECs but not in CLU-null TECs. Further experiments showed that CLU-dependent prosurvival autophagy was associated with activation of the unfolded protein response in hypoxic kidney cells. In conclusion, these data suggest that activation of prosurvival autophagy by hypoxia in kidney cells requires CLU expression and may be a key cytoprotective mechanism of CLU in the protection of the kidney from hypoxia/ischemia-mediated injury.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3