Regulation of erythropoietin production is related to proximal tubular function

Author:

Eckardt K. U.1,Kurtz A.1,Bauer C.1

Affiliation:

1. Department of Physiology, University of Zurich, Switzerland.

Abstract

Regulation of renal erythropoietin (EPO) production is based on an intrarenal oxygen sensor. Whereas the sensitivity of this oxygen sensor to variations in renal oxygen supply is well established, the influence of changes in renal oxygen consumption has not yet been elucidated. Diuretic drugs, which inhibit active sodium reabsorption, reduce tubular oxygen consumption. We therefore investigated the effects of acetazolamide, furosemide, hydrochlorothiazide, and amiloride, known to preferentially inhibit sodium reabsorption at different segments of the nephron, on hypoxia-induced EPO formation in mice. Those drugs that are considered to act mainly in the loop of Henle, distal tubule, and collecting duct (furosemide, hydrochlorothiazide, and amiloride) did not impair EPO formation. Acetazolamide on the other hand, which is thought to act predominantly at the proximal tubular site, significantly reduced EPO formation in response to normobaric hypoxia (8 and 14% O2) and functional anemia (0.1% carbon monoxide). This inhibitory effect of acetazolamide was dose dependent and correlated with the natriuresis induced. It appeared not to depend on the metabolic acidosis induced by the drug, since the simultaneous administration of sodium bicarbonate, which restored standard bicarbonate levels to normal, did not diminish the inhibitory effect of acetazolamide on EPO production. In conclusion the data suggest that the regulation of EPO production is likely to be related to proximal tubular function.

Publisher

American Physiological Society

Subject

Physiology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3