Molecular events in the organization of renal tubular epithelium: from nephrogenesis to regeneration

Author:

Bacallao R.1,Fine L. G.1

Affiliation:

1. Department of Medicine, University of California Los Angeles, School of Medicine 90025.

Abstract

Information from studies of embryonic nephrons and established renal tubular cell lines in culture can be integrated to derive a picture of how the renal tubule develops and regenerates after acute injury. During development, the formation of a morphologically polarized epithelium from committed nephric mesenchymal cells requires an external signal for mitogenesis and differentiation. Polypeptide growth factors, in some cases mediated through oncogene expression, act in an autocrine or paracrine fashion to stimulate the production of extracellular matrix proteins that probably provide the earliest orientation signal for the cell. Interaction of these proteins with cell surface receptors leads to early organization of the cytoskeletal actin network, which is the major scaffolding for further differentiation and for definition of plasma membrane domains. The formation of cell-cell contacts via specialized adhesion molecules integrates the epithelium into a polarized monolayer and maintains its fence function, i.e., separation of plasma membrane domains. Microtubules probably participate in the delivery of vesicles to specific plasma membrane domains and in the spatial organization of intracellular organelles. Following acute renal injury, this sequence of events appears to be reversed, resulting in partial or complete loss of differentiated features. Regeneration seems to follow the same pattern of sequential differentiation steps as nephrogenesis. The integrity of the epithelium is restored by reestablishing only those stages of differentiation that have been lost. Where cell death occurs, mitogenesis in adjacent cells restores the continuity of the epithelium and the entire sequence of differentiation events is initiated in the newly generated cells.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3