Chlorothiazide effect on feedback-mediated control of glomerular filtration rate

Author:

Okusa M. D.1,Persson A. E.1,Wright F. S.1

Affiliation:

1. Department of Medicine and Cellular, Yale University School of Medicine, West Haven, Connecticut.

Abstract

We examined the effect of chlorothiazide (CTZ) on the tubuloglomerular (TG) feedback system in anesthetized Sprague-Dawley rats. During infusion of CTZ (0.25 mg.kg body wt-1.min-1) we found that whole kidney glomerular filtration rate (GFR) decreased by 19% (1.0 +/- 0.1 vs. 0.8 +/- 0.1 ml/min; P less than 0.005). To asses the activity of the TG feedback system during CTZ administration we compared measurements of single-nephron (SN)GFR from tubule fluid sampled separately at proximal and distal sites. During CTZ administration, distally measured SNGFR decreased significantly by 16% (27.3 +/- 1.3 vs. 22.9 +/- 1.1 nl/min; P less than 0.025), whereas proximally measured SNGFR was unchanged. Thus the difference in SNGFR between proximal and distal determination increased during CTZ infusion (4.7 +/- 0.7 vs. 7.7 +/- 0.7 nl/min; P less than 0.025), indicating that CTZ suppresses GFR by TG feedback. Na, K, and Cl concentrations measured in the late proximal tubule fluid during control and CTZ infusions were similar. In early distal tubule fluid samples K and Cl concentrations were unaffected by CTZ infusion, whereas Na concentrations increased by 32% (47.9 +/- 2.7 vs. 63.1 +/- 2.4 mM; P less than 0.001). Proximal tubule microperfusion with 1.0 mM CTZ decreased transport rates of Na and water by approximately 40%, whereas the transport rate of Cl was not affected. In conclusion our results indicate that CTZ reduces GFR by activating TG feedback. The mechanism by which this occurs is in part due to an increase in the strength of the signal.

Publisher

American Physiological Society

Subject

Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3