Low-conductance K channels in apical membrane of rat cortical collecting tubule

Author:

Frindt G.1,Palmer L. G.1

Affiliation:

1. Department of Physiology, Cornell University Medical College, NewYork, New York 10021.

Abstract

Low-conductance, K-selective channels were identified in the apical membrane of the rat cortical collecting tubule (CCT) by use of the patch-clamp technique. Isolated, split tubules were bathed in K gluconate medium to depolarize the cell while keeping the intracellular K concentration high. With the patch-clamp pipette containing predominantly either Na+ or Li+ but no K, outward currents were observed through channels that had a single-channel conductance (g) of 9 pS and a probability of being open (Po) of greater than 0.9, independent of the voltage (+/- 40 mV) applied to the pipette (Vp). Similarly, only outward currents were observed when the patch was excised into high-K solution, implying a high selectivity of the channel for K+. When 1 mM BaCl2 was added to the pipette, Po decreased to 0.36 at Vp = 0; however, g was not changed but the channels flickered rapidly between open and blocked states; Po decreased as Vp was made positive, and increased as Vp was made negative. With the pipette filled with KCl + 1 mM Ba, the channels conducted K+ in both directions. The inward currents (at positive Vp were larger than the outward currents (at negative Vp) and g near Vp = 0 increased to 25 pS. When the pipette was filled with RbCl + 1 mM Ba the inward and outward currents were similar in magnitude, suggesting that the channels can conduct Rb, although not as well as K. With the tubules bathed in NaCl Ringer solution and the pipette containing KCl, inward currents were observed that could be attributed to the same pathway for K.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3