Plasma membrane calcium pump and 28-kDa calcium binding protein in cells of rat kidney distal tubules

Author:

Borke J. L.1,Caride A.1,Verma A. K.1,Penniston J. T.1,Kumar R.1

Affiliation:

1. Department of Medicine, Mayo Clinic and Foundation, Rochester,Minnesota 55905.

Abstract

In an effort to extend our studies on Ca2+ pumps to animal models, we developed a new monoclonal antibody (5F10) prepared against the human erythrocyte Ca2+-Mg2+-adenosinetriphosphatase (ATPase) that recognizes a protein of approximately 140 kDa in rat kidney homogenates. Enzyme-linked immunosorbent assays show that monoclonal antibody 5F10 binds purified Ca2+-Mg2+-ATPase and rat kidney membrane extracts in a concentration-dependent manner. In paraffin-embedded tissue sections, antibody 5F10 binds to an epitope in the basolateral membranes of rat kidney distal convoluted tubule principal cells. The antibody does not bind to intercalated cells. The latter cells were characterized by the presence of large amounts of carbonic anhydrase C. Polyclonal antibodies directed against chick intestinal 28-kDa vitamin D-dependent calcium binding protein (28-kDa CaBP) also bind epitopes in distal convoluted tubule cells, connecting tubules, and portions of collecting duct but not intercalated cells. Western blot and 45Ca blot analysis of renal cytosolic proteins showed that the polyclonal 28-kDa CaBP-directed antibody detects a protein which also binds calcium. Western blot analysis with monoclonal antibody 5F10 shows binding to both the authentic purified erythrocyte Ca2+ pump (approximately 138 kDa) and to tryptic fragments of this pump. Antibody JA3, previously used for staining of human kidney tubules, reacts with a different set of tryptic fragments, showing that the two antibodies are directed against different regions or conformational determinants on the pump molecule. We show that Ca2+-Mg2+-ATPase and 28-kDa CaBP are present in the principal cells of the distal convoluted tubule of the rat and are absent in intercalated cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3