Effect of luminal perfusion on glucose production by isolated proximal tubules

Author:

Nagami G. T.1,Lee P.1

Affiliation:

1. Service, Veterans Administration Medical Center, West Los Angeles,California.

Abstract

The effects of luminal perfusion on glucose production by the proximal tubule were examined by use of the technique of in vitro microperfusion with an ultramicroassay for glucose to measure the net glucose production rates in isolated mouse midproximal tubule segments. Tubules bathed in Krebs-Ringer bicarbonate (KRB) buffer containing L-glutamine and acetate and perfused with KRB buffer at a high flow rate produced glucose at a lower rate (0.12 +/- 0.02 pmol.min-1.mm-1) than unperfused segments (0.40 +/- 0.03) or segments perfused at a lower flow rate (0.24 +/- 0.03). In contrast, the estimated rates of glucose utilization were not affected by luminal perfusion. The inhibition of net fluid reabsorption by perfusion with a modified KRB buffer containing amiloride or by addition of ouabain to the bath medium raised glucose production rates to levels equaling or exceeding those observed in unperfused tubules. The inhibition of glucose production by luminal perfusion occurred in the presence of multiple substrates (i.e., glutamine, acetate, lactate, pyruvate, alanine, and valerate) or nonammoniagenic substrates (i.e., lactate and pyruvate) in the bath medium. Thus net glucose production is inhibited by luminal perfusion and the inhibitory effect is dependent on intact fluid reabsorption. The reduction in net glucose production observed with perfusion does not result from increased glucose utilization and is not dependent on the presence of specific substrates.

Publisher

American Physiological Society

Subject

Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ammonia Production and Secretion by the Proximal Tubule;American Journal of Kidney Diseases;1989-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3