Volume absorption in the pars recta. III. Luminal hypotonicity as a driving force for isotonic volume absorption

Author:

Andreoli T. E.,Schafer J. A.

Abstract

This paper examines the possibility that osmotic disequilibrium between luminal and bathing solutions may account for isotonic fluid absorption coupled to active Na+ absorption observed when superficial proximal straight tubules isolated from rabbit kidney are perfused and bathed with NaCl solutions in the absence of CO2, HCO3-, and luminal organic solutes. If luminal hypotonicity provides a driving force for isotonic fluid absorption under these conditions, the luminal fluid must be nearly isotonic; and steady-state luminal hypotonicity should develop sufficiently rapidly that the absolute rate of volume absorption ('JV, nl min-1) coupled to active Na+ transport is relatively independent of perfusion rate, so that the normalized rate of fluid absorption (JV, nl min-1 mm-1) is approximately constant. Our theoretical calculations indicate that these expectations are fulfilled. A 0.42-0.56 mM reduction in luminal NaCl concentration adequately accounts for the JV observed under such conditions, because of the high hydraulic conductivity of these tubules; and within the range of tubule lengths normally employed with isolated proximal straight tubules, JV is relatively indepedent of perfusion rate within the generally observed range of experimental error.

Publisher

American Physiological Society

Subject

Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Directional Fluid Transport across Organ–Blood Barriers: Physiology and Cell Biology;Cold Spring Harbor Perspectives in Biology;2016-12-21

2. Renal Replacement Devices;Principles of Tissue Engineering;2014

3. Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1;American Journal of Physiology-Renal Physiology;2013-11-01

4. Renal Replacement Devices;Principles of Tissue Engineering;2007

5. Luminal hypotonicity in proximal tubules of aquaporin-1-knockout mice;American Journal of Physiology-Renal Physiology;2000-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3