Renal autoregulation: perspectives from whole kidney and single nephron studies

Author:

Navar L. G.

Abstract

The phenomenon of renal autoregulation is often thought to relate only to the manner in which the kidney responds to changes in arterial pressure. This review presents a more comprehensive description of the process based on the intrinsic renal vascular responses to changes in arterial pressure, venous pressure, ureteral pressure, and plasma colloid osmotic pressure. Regulation of glomerular filtration rate (GFR), or some function thereof, is the feature most consistently observed. More specifically, in response to external manipulations that change GFR, autonomous changes in renal vascular resistance tend to return GFR back towards normal. The bulk of the evidence suggests that the requisite renal vascular resistance alterations occur predominately at preglomerular segments. Most of the whole kidney autoregulatory responses can be explained on the basis of the distal tubule-glomerular feedback hypothesis, thought to be mediated by the macula densa-juxtaglomerular complex, which states that increases in distal volume delivery lead to increases in afferent arteriolar resistance while reduced distal delivery leads to afferent arteriolar dilation. Micropuncture data have demonstrated that interruption of distal volume delivery prevents single nephrons from autoregulating GFR and glomerular pressure. Also, single nephron glomerular filtration rate (SNGFR) based on proximal collections is higher than SNGFR measured by distal collections or with an indicator-dilution technique. Studies utilized direct microperfusion of the distal nephron from a late proximal tubule site have demonstrated that SNGFR and glomerular pressure decrease in response to increases in distal nephron perfusion rate. Although experiments in rats have been interpreted as indicating that distal chloride concentration and/or reabsorption most likely mediate the feedback responses, recent studies in dogs have demonstrated that feedback responses can be consistently obtained with nonelectrolyte perfusion solutions. These latter studies suggest that the feedback response may be sensitive to some function of total solute delivery or concentration. At present, there is no clear understanding of the intracellular events that link the compositional alterations occurring within the early distal tubule to the final effector system.

Publisher

American Physiological Society

Subject

Physiology

Cited by 195 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3