Chronic elevation of renal venous pressure induces extensive renal venous collateral formation and modulates renal function and cardiovascular stability in rats

Author:

Hamza Shereen M.12,Huang Xiaohua1,Zehra Tayyaba1,Zhuang Wenqing1,Cupples William A.13,Braam Branko12

Affiliation:

1. Department of Medicine, University of Alberta, Edmonton, Alberta, Canada

2. Department of Physiology, University of Alberta, Edmonton, Alberta, Canada

3. Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada

Abstract

Acutely increased renal venous pressure (RVP) impairs renal function, but the long-term impact is unknown. We investigated whether chronic RVP elevation impairs baseline renal function and prevents exacerbation of renal dysfunction and cardiovascular instability upon further RVP increase. RVP elevation (20–25 mmHg) or sham operation (sham) was performed in rats. After 1 wk ( n = 17) or 3 wk ( n = 22), blood pressure, RVP, renal blood flow (RBF), renal vascular conductance (RVC), and glomerular filtration rate (GFR) were measured at baseline and during superimposed RVP increase. Chronic RVP elevation induced extensive renal venous collateral formation. RVP fell to 6 ± 1 mmHg at 1 wk and 3 ± 1 mmHg at 3 wk. Baseline blood pressure and heart rate were unaltered compared with sham. RBF, RVC, and GFR were reduced at 1 wk but normalized by 3 wk. Upon further RVP increase, the drop in mean arterial pressure was attenuated at 3 wk compared with 1 wk ( P < 0.05), whereas heart rate fell comparably across all groups; the mean arterial pressure-heart rate relationship was disrupted at 1 and 3 wk. RBF fell to a similar degree as sham at 1 wk (−2.3 ± 0.7 vs. −3.9 ± 1.2 mL/min, P = 0.066); however, at 3 wk, this was attenuated compared with sham (−1.5 ± 0.5 vs. −4.2 ± 0.7 mL/min, P < 0.05). The drop in RVC and GFR was attenuated at 1 and 3 wk ( P < 0.05). Thus, chronic RVP elevation induced by partial renal vein ligation elicits extensive renal venous collateral formation, and although baseline renal function is impaired, chronic RVP elevation in this manner induces protective adaptations in kidneys of healthy rats, which attenuates the hemodynamic response to further RVP increase.

Funder

Heart and Stroke Foundation of Canada

Li Ka Shing Foundation

Publisher

American Physiological Society

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3